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Abstract. The increasing need for detailed data at small-area geographic levels often
requires estimates from statistical surveys. While large areas often have sufficient sampling
sizes for reliable measures, small areas frequently have small sampling sizes that render
estimates at this granular level unusable. Conducting censuses or increasing sampling sizes
might not be feasible remedies given their cost-prohibitive nature. Thus, statistical techniques
are needed to improve data quality. One method involves composite shrinkage estimation,
which leverages sampling strength between small areas and large areas to improve the
reliability of small-area estimates. We conducted a simulation study that elucidates the
usability of composite shrinkage estimators under various conditions of across-area similarity
and within-area variance. Furthermore, we show a preliminary application of the statistical
method, using the American Community Survey PUMS data.

1. Introduction to Composite Shrinkage Estimators

Composite shrinkage estimation represents one statistical method to develop efficient small-
area estimators by borrowing sampling strength from the larger area that contains the small
area. This design-based method contains many intuitive insights that have conceptual linkages
to model-based methods and extensions of the composite estimator form, which will be
reviewed in future working papers in this series. Given unreliable small-area estimates, the
only recourse might be to apply the attributes of the large area to the constituent small areas.
However, this would amount to assuming that the attributes of the large area exist uniformly
within its boundaries.
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Longford shows that composite forms of small-area and larger-area estimators are in fact
more efficient1 than the dichotomous selection of either estimator [1]. The following concep-
tual framework of composite shrinkage estimation stems mostly from Longford. Following
Longford’s nomenclature and notation, we will refer to small areas as districts and larger-area
estimators as “national” estimators.

1.1. Overview. Longford dismisses the practice of testing the null hypothesis that all district
parameters θd are the same for all d ∈ D, where D is the set of all districts within a particular
larger area (e.g., place or county). In this framework, if the null hypothesis is rejected, then

each district d is assigned its district-level estimator θ̂d. Otherwise, each district takes on the
“national” estimator θ̂ [1]. Longford argues that this overly dichotomous framework does not
lead to efficient district-level estimators.

Composite shrinkage estimators serve as one potential alternative. Longford discusses three
variations of composite shrinkage estimators:

• composite of θ̂d and θ̂
• composite of θ̂d and all other district estimators θ̂d′ ∀d′ ∈ D \ {d}
• composite of θ̂d and all other district estimators θ̂d′ with spatial similarity [2]

In this paper, we will focus on the first baseline method, including its applications. The
tradeoff between variance and bias underlies this baseline method. While small-area estimators
are unbiased, their large sample variance could lead to unreliable estimates. On the other
hand, composite shrinkage estimators incur some bias, which is offset by the reduction in
variability.

1.2. Composite Form. The composite shrinkage estimator is formulated as the linear
combination of the district estimator θ̂d and the “national” estimator θ̂.

θ̂Cd = (1− b)θ̂d + bθ̂ (1.1)

where b is the weight assigned to the “national” estimator.

The optimal composite estimator of the form in (1.1) is obtained by minimizing MSE
{
θ̂Cd ; θd

}
,

which is the mean squared error of the composite estimator θ̂Cd with respect to the actual
district-level paramenter θd.

Note that MSE
{
θ̂Cd ; θd

}
can be decomposed into Var(θ̂Cd ) and the squared bias B2(θ̂; θd) of θ̂

with respect to θd. Longford expresses the mean squared error of the composite estimator in

1In this context, θ̂1 is more efficient than θ̂2 for estimating the actual parameter θ if and only if

MSE(θ̂1; θ) < MSE(θ̂2; θ).
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the following form:

MSE
{
θ̂Cd ; θd

}
= vd − 2b(vd − cd) + b2(vd + v − 2cd +B2

d)

= R0,d − 2bR1,d + b2R2,d

where
vd = Var

(
θ̂d
)

cd = Cov
(
θ̂d, θ̂

)
Bd = B(θ̂; θd) = E

[
θ̂
]
− θd

R0,d = vd

R1,d = vd − cd
R2,d = vd + v − 2cd +B2

d

MSE
{
θ̂Cd ; θd

}
is a function of b. Let f(b) = b2R2,d − 2bR1,d +R0,d.

The minimum of f(b) is attained by solving f ′(b) = 2R2,db− 2R1,d = 0.

b? =
R1,d

R2,d

=
vd − cd

vd + v − 2cd +B2
d

(1.2)

We rewrite Longford’s result of (1.2) in the following way to extract some intuition behind
the dynamics of the optimal weight assigned to the national estimator:

b? =

(
1− ud

u+

)
vd(

1− 2ud
u+

)
vd + v + (θ − θd)2

(1.3)

=

(
1− ud

u+

)
vd(

1− 2ud
u+

)
vd + MSE

{
θ̂; θd

} (1.4)

where ud
u+

is the district sample as a proportion of the “national” sample. Please see Appen-

dix A.1 for the derivation of cd = ud
u+
vd, which relies on the standard assumption that the

direct district-level estimators are mutually independent.

This functional form (1.4) of the optimal weight assigned to the national estimator can be
thought of as a function of the district-level sampling variance vd, and the mean squared
error of the national estimator θ̂ with respect to the actual district parameter θd. The weight
assigned to the national estimator is large in the case of large district-level sample variances,
given the high uncertainly of the direct estimators.

On the other hand, the optimal weight b? is a decreasing function of the mean squared error
of the national estimator θ̂ with respect to the actual district-level parameter θd. This mean

squared error, MSE
{
θ̂; θd

}
, is distinct from the one we are minimizing to obtain optimal

composite estimators. As the national estimator deviates more from the actual district
parameter θd—either through large national sample variance v or elevated bias between the
national and district parameters—the optimal weight b? assigned to the national estimator
decreases. This makes intuitive sense, since a large mean squared error of the national estimator
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θ̂ with respect to the actual district parameter θd would merit a large weight assigned to the
direct district-level estimator θ̂d.

1.3. Second-Order Conditions. Since f is a polynomial in b, in order for a minimum to

exist on f(b) = MSE
{
θ̂Cd (b); θd

}
at some b?, f must be convex on an interval containing b?,

meaning that
f ′′(b) = 2R2,d = 2(vd + v − 2cd +B2

d) > 0 (1.5)

Thus, the necessary and sufficient condition for the convexity of f is vd + v +B2
d > 2cd. In

order to derive a sufficient condition for the convexity of f , the second-order condition (1.5)

is further manipulated with cd = ud
u+
vd and MSE

{
θ̂; θd

}
= v +B2

d into the following form:(
1− 2

ud
u+

)
vd + MSE

{
θ̂; θd

}
> 0

1

2

(
1 +

MSE
{
θ̂; θd

}
vd

)
>
ud
u+

Since inf 1
2

(
1 +

MSE{θ̂;θd}
vd

)
= 1

2
, the existence of b? minimizing f(b) is guaranteed for districts

with sampling weights less than half of the aggregated sample of the larger area. In practice,
few districts will have sampling weights greater than half of the entire sample of the larger area
than contains them. Thus, the existence of b? will almost be a given under most conditions in
which larger areas do not contain any overwhelmingly large components.

1.4. Expected MSE. Since B2
d = (θ − θd)2 is difficult to estimate2, B2

d is replaced with the

district-level variance σ2
B = 1

D

D∑
d=1

(θd − θ)2, which is the district-level expectation of (θd − θ)2,

where D is the total number of districts in the larger area associated with θ. Instead of the
optimal weight b? assigned to the “national” estimator, we obtain a suboptimal

b† =
vd − cd

vd + v − 2cd + σ2
B

(1.6)

which minimizes the expected mean squared error eMSE
{
θ̂Cd (bd); θd

}
= ED

[
MSE

{
θ̂Cd ; θd

}]
.

1.5. Estimating District-Level Variance. We still cannot calculate σ2
B = 1

D

D∑
d=1

(θd − θ)2

given the unknown parameters θd and θ. Through the method of moment matching (see
Appendix A.2), σ2

B can be estimated by

σ̂2
B =

1

w+

S −
D∑
d=1

wd(vd − 2cd)

− v (1.7)

2The “naive” estimator (θ̂ − θ̂d)2 is biased for B2
d. Please see Appendix A.3.
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where wd

w+
is some weight given to each district d and S =

D∑
d=1

wd(θ̂d− θ̂)2. A reasonable weight

wd

w+
would be the district sampling weight ud

u+
.

The resulting estimated suboptimal weight would be

b̂† =
vd − cd

vd + v − 2cd + σ̂2
B

(1.8)

In practice, θ̂Cd (b?) is unattainable given the unknown B2
d. Nonetheless, in the following

simulation study, we will show that the suboptimal composite form θ̂Cd (b̂†) performs fairly

well relative to the optimal composite form θ̂Cd (b?).

2. Simulation Study

In order to better illustrate the statistical properties underlying Longford’s composite shrinkage
estimation method, we conduct a simulation study focused on varying conditions of across-
district similarity and within-district variances.

2.1. Method and Design. Our simulation study involves five districts (A, B, C, D, and E)
for four cases resulting from the combination of two conditions:

• similarity/dissimilarity of θd across districts
• large and small within-district population variances (σ2

d)

Figures 1–4 show the distribution of the estimators θ̂d, θ̂
C
d (b?), and θ̂Cd (b̂†) resulting from

1,000 repeated samples of the simulation population with the design of 2.5% simple random
sample without replacement for each district. Across all four cases, the simulated district
population sizes remain the same. Given our sampling design, the simulated district sample
sizes also remain constant across the four simulation cases. For each estimator, the 5th (P5)
and 95th (P95) percentiles from the simulated distributions are reported with the empirical
MSE (Tables 1–4).

2.2. Simulation Analysis. In all simulation cases, Districts A and B have relatively low
reductions in MSE, since they have larger sample sizes than the other districts. In fact,
Districts A and B have sampling weights of nearly 42 and 28 percent, respectively. Districts
with such large sampling weights probably do not need further improvement with composite
estimators. Rather, their sampling strength is borrowed for the smaller districts.

Of the four simulation cases, Case SL (Figure 1) shows the most overall improvement in the

estimates using composite shrinkage estimation. The optimal composite estimators θ̂Cd (b?)
for Districts C, D, and E have empirical MSE reductions of 75.6, 87.0, and 84.8 percent,
respectively. The suboptimal composite estimators θ̂Cd (b̂†) for Districts C, D, and E also
made large improvements with MSE reductions of 63.7, 71.5, and 72.3 percent, respectively.
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These three districts leveraged across-district similarity (manifested in MSE
{
θ̂; θd

}
) and the

large sample sizes of Districts A and B to achieve such huge improvements in the estimates.
Furthermore, the large population variances underlying the districts in Case SL led to heavy
leveraging of θ̂.

In Case DL (Figure 2), the composite estimators for Districts C, D, and E incur noticeable bias
given across-district dissimilarity. One potential remedy of this issue would be to re-partition
the districts into similar groups. For instance, Districts A and B could be re-grouped with
other neighboring districts with large values of θ̂d, while Districts C and D could leverage
sampling strength from other districts with smaller values of θ̂d. This would create conditions
similar to those in Case SL, leading to more favorable improvements in the use of composite
estimators.

Given the across-district similarity and small district variances in Case SS (Figure 3), composite
estimation yields only minimal improvement to the already reliable direct district estimates.
However, Case DS (Figure 4) shows that this method would not be effective for dissimilar
districts with small within-district variances. Intuitively, we may not even need composite
estimator methods in Cases SS and DS, since the underlying population variances for all
districts are small.
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Figure 1. Estimator Distributions from Similar Districts (Large Variance)
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Table 1. Empirical MSE of Estimators from Similar Districts (Large Variance)

θ̂d θ̂Cd (b?) θ̂Cd (b̂†)

nd θd σd P5 P95 MSE P5 P95 MSE P5 P95 MSE

A 45 8.1 6.9 6.4 9.8 1.10 7.1 9.3 0.43 6.8 9.5 0.69

B 30 7.9 6.9 5.8 9.9 1.48 7.0 9.3 0.52 6.5 9.4 0.77

C 15 8.8 7.3 5.8 11.8 3.28 7.1 9.5 0.80 6.9 10.2 1.19

D 10 7.8 6.5 4.2 11.2 4.53 7.0 9.3 0.59 6.1 9.8 1.29

E 8 8.7 6.5 5.0 12.5 5.27 7.1 9.5 0.80 6.6 10.5 1.46

Figure 2. Estimator Distributions from Dissimilar Districts (Large Variance)
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Table 2. Empirical MSE of Estimators from Dissimilar Districts (Large Variance)

θ̂d θ̂Cd (b?) θ̂Cd (b̂†)

nd θd σd P5 P95 MSE P5 P95 MSE P5 P95 MSE

A 45 8.7 9.1 6.6 11.0 1.79 6.7 9.8 1.16 6.7 10.5 1.37

B 30 7.6 8.5 5.1 10.2 2.39 6.4 9.4 0.90 5.8 9.7 1.39

C 15 6.2 9.1 2.1 10.0 5.62 4.8 9.2 2.86 4.6 9.2 3.35

D 10 9.7 9.5 4.7 14.6 8.85 6.4 10.8 3.27 6.2 11.5 3.80

E 8 6.2 9.1 1.1 11.5 10.00 5.0 9.5 3.22 4.3 9.6 3.78
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Figure 3. Estimator Distributions from Similar Districts (Small Variance)
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Table 3. Empirical MSE of Estimators from Similar Districts (Small Variance)

θ̂d θ̂Cd (b?) θ̂Cd (b̂†)

nd θd σd P5 P95 MSE P5 P95 MSE P5 P95 MSE

A 45 8.0 0.9 7.8 8.2 0.02 7.9 8.1 0.01 7.8 8.2 0.01

B 30 8.0 0.9 7.7 8.3 0.02 7.9 8.1 0.01 7.8 8.2 0.01

C 15 8.0 0.9 7.7 8.4 0.06 7.9 8.1 0.01 7.8 8.2 0.02

D 10 8.0 0.5 7.7 8.2 0.02 7.9 8.1 0.01 7.8 8.2 0.01

E 8 8.1 0.5 7.8 8.3 0.03 7.9 8.2 0.01 7.9 8.2 0.01

Figure 4. Estimator Distributions from Dissimilar Districts (Small Variance)
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Table 4. Empirical MSE of Estimators from Dissimilar Districts (Small Variance)

θ̂d θ̂Cd (b?) θ̂Cd (b̂†)

nd θd σd P5 P95 MSE P5 P95 MSE P5 P95 MSE

A 45 8.0 2.9 7.4 8.7 0.19 7.7 8.7 0.10 7.5 8.7 0.14

B 30 8.4 2.8 7.4 9.2 0.26 7.8 8.7 0.09 7.6 8.9 0.15

C 15 7.5 2.9 6.2 8.7 0.57 6.9 8.6 0.36 7.0 8.6 0.45

D 10 9.1 2.4 7.8 10.4 0.61 7.9 9.6 0.39 7.9 9.5 0.47

E 8 9.3 2.7 7.8 10.9 0.87 7.9 9.9 0.57 7.9 9.6 0.75
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2.3. MSE Curves of Simulation Cases. Figures 5 and 6 show the MSE curves for one
sample instance from the simulated populations of Case SL and Case DL, respectively. The
points on the curve are the weights b?, b†, and b̂† obtained from the sample instance.

The endpoints at b = 0 and b = 1 represent the use of direct estimators θ̂d and θ̂, respectively.
Since the district parameters are very similar in Case SL, the sampling strength from the
“national” estimator θ̂ can be heavily leveraged. In fact, the empirical weights for all districts
in Case SL are fairly close to 1. On the other hand, the weights assigned to θ̂ in Case DL are
attenuated. While the large population variances for the districts push the empirical weights
toward b = 1, the across-district dissimilarity pulls the weights toward b = 0, thereby leading
to the attenuation in leveraging θ̂.

Figure 5. Case SL
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Figure 6. Case DL
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Figures 7 and 8 show the MSE curves for one sample instance from the simulated populations
of Case SS and Case DS, respectively. In Case SS, the across-district similarity with small
variance can easily lead to weights closer to b = 1 or greater than 1. This means that the
sampling strength of the “national” estimator can be heavily leveraged. On the other hand,
the weights in Case DS are closer to the endpoint b = 0, since the district estimators are
extremely dissimilar with small variance. Thus, we cannot leverage sampling strength across
districts as in the other cases.

Figure 7. Case SS
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Figure 8. Case DS

● ●

●

●

●

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
b

M
S

E
( θ

dC
(b

);
 θ

d )

b type
●●● b*

b+

b+

District

A

B

C

D

E



Page 10 Economic and Statistical Working Paper Series

3. American Community Survey PUMS

As a demonstration of the composite estimation method, we used the Public Use Microdata
Sample (PUMS) from the American Community Survey (ACS) to estimate selected household
attributes in Salt Lake County. Specifically, we used data from the 2008–2011 1-year ACS
PUMS for the seven Public Use Microdata Areas (PUMAs) that constitute a partition of Salt
Lake County (i.e. PUMAs 00501, 00502, 00503, 00504, 00505, 00506, 00507). These seven
PUMAs serve as the “districts” and Salt Lake County serves as the “nation” in applying the
composite estimation method. In all of the following cases, the composite estimation method
was applied separately for each year.

..

00503

.

00501

.

00507

.

00504

.

00505

.

00506

.

00502

.

Census PUMAs within Salt Lake County

Figure 9. Census PUMAs within Salt Lake County

3.1. Case 1: Persons per Household. In this first case, we estimated the mean household
size (E [PPHd]) among all households, regardless of the household characteristics. Since no
additional filter was applied to the households, the district-level sample sizes in the ACS
PUMS data are very large, and thus the variance of the sampling distribution of PPH is small.
As a result, the empirical weights b̂† are very small as shown in Table 5, thereby leading to
very minimal reduction in MSE. Thus, the composite estimates are closely aligned with the
district estimates (Table 10). This is an expected result given the large district-level sample
sizes.
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Figure 10. Estimates of PPH by PUMA, 2008–2011
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Table 5. MSE Reduction of PPH Estimates by PUMA, 2008–2011

PUMA year nd n vd v θ̂d θ̂ b̂† θ̂Cd MSE % ↓ MSE

00501 2008 653 3085 0.0083 0.0017 2.42 2.86 0.05 2.44 0.01 4
00502 2008 451 3085 0.0117 0.0017 3.42 2.86 0.07 3.38 0.01 6
00503 2008 387 3085 0.0130 0.0017 3.20 2.86 0.08 3.17 0.01 7
00504 2008 469 3085 0.0080 0.0017 2.50 2.86 0.05 2.52 0.01 4
00505 2008 348 3085 0.0120 0.0017 2.85 2.86 0.08 2.85 0.01 7
00506 2008 375 3085 0.0130 0.0017 3.21 2.86 0.08 3.18 0.01 7
00507 2008 402 3085 0.0076 0.0017 2.84 2.86 0.05 2.84 0.01 4
00501 2009 655 3102 0.0035 0.0012 2.32 2.87 0.01 2.33 0.00 1
00502 2009 468 3102 0.0091 0.0012 3.55 2.87 0.04 3.52 0.01 3
00503 2009 390 3102 0.0098 0.0012 3.31 2.87 0.04 3.29 0.01 4
00504 2009 472 3102 0.0053 0.0012 2.42 2.87 0.02 2.43 0.01 2
00505 2009 343 3102 0.0103 0.0012 2.99 2.87 0.05 2.98 0.01 4
00506 2009 364 3102 0.0088 0.0012 3.11 2.87 0.04 3.10 0.01 3
00507 2009 410 3102 0.0074 0.0012 2.80 2.87 0.03 2.80 0.01 3
00501 2010 660 3193 0.0046 0.0011 2.38 2.89 0.02 2.39 0.00 2
00502 2010 487 3193 0.0061 0.0011 3.46 2.89 0.03 3.45 0.01 2
00503 2010 404 3193 0.0079 0.0011 3.35 2.89 0.04 3.33 0.01 3
00504 2010 490 3193 0.0047 0.0011 2.39 2.89 0.02 2.40 0.00 2
00505 2010 362 3193 0.0121 0.0011 2.85 2.89 0.06 2.85 0.01 5
00506 2010 380 3193 0.0096 0.0011 3.28 2.89 0.04 3.27 0.01 4
00507 2010 410 3193 0.0081 0.0011 2.97 2.89 0.04 2.96 0.01 3
00501 2011 744 3192 0.0044 0.0008 2.40 2.86 0.03 2.41 0.00 2
00502 2011 379 3192 0.0134 0.0008 3.35 2.86 0.08 3.31 0.01 7
00503 2011 406 3192 0.0101 0.0008 3.25 2.86 0.06 3.23 0.01 5
00504 2011 472 3192 0.0055 0.0008 2.47 2.86 0.03 2.48 0.01 3
00505 2011 368 3192 0.0129 0.0008 2.81 2.86 0.08 2.81 0.01 7
00506 2011 380 3192 0.0147 0.0008 3.25 2.86 0.09 3.22 0.01 8
00507 2011 443 3192 0.0083 0.0008 2.86 2.86 0.05 2.86 0.01 4
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3.2. Case 2: Persons per Household among Multigenerational Households. In this
case, we applied the composite estimation method to mean household size among multigener-
ational households (E [MGPPHd]). The district-level sample sizes are much smaller, and the
variance of the sampling distribution of MGPPHd is much larger. Given the large variability
associated with the direct district estimates, the composite estimation method can leverage θ̂
more heavily, as evidenced by the large empirical weights b̂† shown in Table 6. As a result, the
composite estimates are pushed in the direction of the county estimates (Figure 11). Unlike
in the first case, the composite estimator in Case 2 yields substantial MSE reduction, since
the relatively large vd across the PUMAs leads to sizeable leveraging of θ̂.

3.3. Extension of Case 1: PPH Using Auxiliary Data from Census 2010. In Case
1, the method of moments estimator of σ2

B produced a negative estimate for the year 2010.

The simplest remedy was to use the naive and biased estimator (θ̂d − θ̂)2 to ensure a positive
value for this squared bias term (see Appendix A.3). This solution has the added benefit
of tracking between-PUMA heterogeneity in θd − θ, as opposed to the method of moments
estimator, which assigns one estimate of the squared bias to all districts.

An alternative way to estimate B2
d involves the use of data from another survey, data from

the same survey but for different years, or census data. In this extension of Case 1, we
used PUMA-level data from the 2010 Census as stand-ins for E [PPH] and E [PPHd] and
computed B2

d ≈ (E [PPH]− E [PPHd])
2 for each district. This retains the benefit of tracking

between-PUMA heterogeneity in θd − θ.

Interestingly, the composite estimates for PUMAs 00505 and 00507 yield substantial MSE
reduction in using auxiliary census data to estimate B2

d (Table 7). Since the county estimates
are extremely close to the estimates for PUMAs 00505 and 00507 (Figure 11), the actual B2

d

for these two districts are presumably very close to 0. This could potentially be the reason
that the moment-matching estimator σ̂2

B produced a negative value.

The increased improvement in MSE reduction using auxiliary census data suggests that the
moment-matching estimator may not be an adequate method to estimate B2

d, especially in
cases where between-district heterogeneity is large.
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Figure 11. Estimates of PPH among Multigenerational Households by PUMA,
2008–2011

..

Direct and Composite Estimates of PPH among Multigenerational Households

.
Year

.

M
ea

n
P

P
H

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

2008

..

2009

..

2010

..

2011

.

2008

..

2009

..

2010

..

2011

.

PUMA 00501

.

PUMA 00502

.

PUMA 00503

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

PUMA 00504

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

PUMA 00505

.

PUMA 00506

.

5.0

.

5.5

.

6.0

.

6.5

.

7.0

.

PUMA 00507

.

direct (θ̂d)

.

county (θ̂)

.

composite (θ̂C
d )

Table 6. MSE Reduction of Multigenerational PPH Estimates by PUMA,
2008–2011

PUMA year nd n vd v θ̂d θ̂ b̂† θ̂Cd MSE % ↓ MSE

00501 2008 15 106 0.7940 0.0637 6.31 5.86 0.92 5.90 0.17 79
00502 2008 18 106 1.0461 0.0637 6.97 5.86 1.01 5.85 0.17 84
00503 2008 22 106 0.1064 0.0637 5.62 5.86 0.36 5.71 0.08 29
00504 2008 7 106 0.1231 0.0637 5.07 5.86 0.41 5.40 0.08 39
00505 2008 17 106 0.2072 0.0637 4.87 5.86 0.56 5.43 0.11 47
00506 2008 12 106 0.4066 0.0637 6.26 5.86 0.74 5.96 0.14 66
00507 2008 15 106 0.3651 0.0637 5.49 5.86 0.72 5.76 0.14 62
00501 2009 20 128 0.1306 0.0293 5.76 5.71 0.76 5.72 0.05 64
00502 2009 23 128 0.2735 0.0293 6.18 5.71 0.97 5.72 0.06 80
00503 2009 26 128 0.1281 0.0293 5.96 5.71 0.78 5.77 0.05 62
00504 2009 9 128 0.0716 0.0293 4.65 5.71 0.57 5.25 0.03 53
00505 2009 19 128 0.1314 0.0293 5.24 5.71 0.76 5.60 0.05 64
00506 2009 21 128 0.2053 0.0293 5.82 5.71 0.89 5.72 0.05 74
00507 2009 10 128 0.1917 0.0293 5.58 5.71 0.81 5.69 0.05 75
00501 2010 17 137 0.4662 0.0234 6.30 5.63 0.50 5.97 0.26 44
00502 2010 21 137 0.3319 0.0234 5.90 5.63 0.86 5.67 0.09 73
00503 2010 25 137 0.1008 0.0234 5.33 5.63 0.46 5.47 0.06 38
00504 2010 9 137 0.4270 0.0234 6.00 5.63 0.76 5.72 0.12 71
00505 2010 29 137 0.1331 0.0234 5.46 5.63 0.81 5.60 0.05 64
00506 2010 16 137 0.1726 0.0234 5.03 5.63 0.29 5.21 0.13 26
00507 2010 20 137 0.1251 0.0234 5.77 5.63 0.82 5.66 0.04 70
00501 2011 23 136 0.2928 0.0373 5.32 5.78 0.77 5.67 0.11 64
00502 2011 20 136 0.2100 0.0373 6.03 5.78 0.66 5.86 0.09 57
00503 2011 28 136 0.1358 0.0373 6.31 5.78 0.54 6.02 0.08 43
00504 2011 9 136 0.1204 0.0373 4.73 5.78 0.50 5.25 0.06 46
00505 2011 22 136 0.4007 0.0373 6.39 5.78 0.86 5.87 0.11 72
00506 2011 17 136 0.0881 0.0373 5.41 5.78 0.41 5.56 0.06 36
00507 2011 17 136 0.0649 0.0373 5.57 5.78 0.33 5.64 0.05 29
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Figure 12. Estimates of PPH by PUMA using Auxiliary Data from Census
2010, 2008–2011
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Table 7. MSE Reduction of PPH by PUMA using Auxiliary Census Data,
2008–2011

PUMA year nd n vd v θ̂d θ̂ b̂† θ̂Cd MSE % ↓ MSE

00501 2008 653 3085 0.0083 0.0017 2.42 2.86 0.02 2.43 0.01 2
00502 2008 451 3085 0.0117 0.0017 3.42 2.86 0.03 3.40 0.01 3
00503 2008 387 3085 0.0130 0.0017 3.20 2.86 0.04 3.19 0.01 3
00504 2008 469 3085 0.0080 0.0017 2.50 2.86 0.03 2.52 0.01 3
00505 2008 348 3085 0.0120 0.0017 2.85 2.86 0.96 2.86 0.00 85
00506 2008 375 3085 0.0130 0.0017 3.21 2.86 0.06 3.18 0.01 5
00507 2008 402 3085 0.0076 0.0017 2.84 2.86 0.61 2.85 0.00 53
00501 2009 655 3102 0.0035 0.0012 2.32 2.87 0.01 2.33 0.00 1
00502 2009 468 3102 0.0091 0.0012 3.55 2.87 0.03 3.53 0.01 2
00503 2009 390 3102 0.0098 0.0012 3.31 2.87 0.03 3.29 0.01 3
00504 2009 472 3102 0.0053 0.0012 2.42 2.87 0.02 2.43 0.01 2
00505 2009 343 3102 0.0103 0.0012 2.99 2.87 0.98 2.87 0.00 87
00506 2009 364 3102 0.0088 0.0012 3.11 2.87 0.04 3.10 0.01 4
00507 2009 410 3102 0.0074 0.0012 2.80 2.87 0.63 2.84 0.00 55
00501 2010 660 3193 0.0046 0.0011 2.38 2.89 0.01 2.39 0.00 1
00502 2010 487 3193 0.0061 0.0011 3.46 2.89 0.02 3.45 0.01 1
00503 2010 404 3193 0.0079 0.0011 3.35 2.89 0.02 3.33 0.01 2
00504 2010 490 3193 0.0047 0.0011 2.39 2.89 0.02 2.40 0.00 2
00505 2010 362 3193 0.0121 0.0011 2.85 2.89 1.02 2.89 0.00 90
00506 2010 380 3193 0.0096 0.0011 3.28 2.89 0.05 3.27 0.01 4
00507 2010 410 3193 0.0081 0.0011 2.97 2.89 0.66 2.92 0.00 58
00501 2011 744 3192 0.0044 0.0008 2.40 2.86 0.01 2.40 0.00 1
00502 2011 379 3192 0.0134 0.0008 3.35 2.86 0.04 3.33 0.01 3
00503 2011 406 3192 0.0101 0.0008 3.25 2.86 0.03 3.24 0.01 3
00504 2011 472 3192 0.0055 0.0008 2.47 2.86 0.02 2.48 0.01 2
00505 2011 368 3192 0.0129 0.0008 2.81 2.86 1.05 2.86 0.00 93
00506 2011 380 3192 0.0147 0.0008 3.25 2.86 0.07 3.22 0.01 6
00507 2011 443 3192 0.0083 0.0008 2.86 2.86 0.69 2.86 0.00 60
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4. Conclusion

We provided a review of Longford’s composite estimation framework, focusing on the baseline
composite form of the district and national estimators. Additional intuitive elements of
this framework have been expounded and demonstrated in the simulation study and initial
application using the ACS PUMS data.

While this baseline composite form leads to huge improvements in the reliability of small-area
estimates, especially in the case of across-district similarity, further gains could be made with
additional extensions. For instance, the initial testing of the ACS PUMS data suggest that
temporal similarity should be incorporated. Furthermore, the simulation study shows that
across-district dissimilarity could hinder improvements in estimates. Thus, the composite
form might need to be reformulated to leverage similarity across neighboring districts rather
than between each individual district and the larger area.

The estimation of the squared bias B2
d will require further research, since this term could easily

affect the extent to which the composite estimator improves small-area estimates. Further
simulation studies might be needed in order to understand the conditions under which the
moment-matching estimator σ̂2

B breaks down. The application of auxiliary census data in
this initial application of the ACS PUMS data yielded some improvement. Potentially, the
composite estimation method could be employed on various estimators of B2

d using different
auxiliary data to produce more reliable estimates of the squared bias that take into account
between-district heterogeneity.

This baseline composite estimation method provides a solid foundation from which to make
sensible extensions that improve the reliability of small-area estimates.



Page 16 Economic and Statistical Working Paper Series

Appendix A. Derivations

A.1. Covariance. In many of the equational forms in this paper, the equality cd = ud
u+
vd

is used. This rests upon the standard assumption that θ̂d are mutually independent for all
d ∈ D, making Cov(θ̂d, θ̂j) = 0 for all j 6= d.

Proof.

cd = Cov
(
θ̂d, θ̂

)
(A.1)

= Cov

(
θ̂d,

∑D
i=1 uiθ̂i
u+

)
(A.2)

= Cov

(
θ̂d,

udθ̂d
u+

)
+
∑
j 6=d

uj
u+

Cov
(
θ̂d, θ̂j

)
(A.3)

=
ud
u+
vd (A.4)

�

A.2. Method of Moment Matching. The following shows brief derivations to obtain σ̂2
B

by the method of moment matching. First, solve for E [S].

E [S] = E

 D∑
d=1

wd(θ̂d − θ̂)2


=
D∑
d=1

wd E
[
(θ̂d − θ̂)2

]
=

D∑
d=1

wd
{
vd + v − 2cd + (θd − θ)2

}
Second, take the district-level expectation of E [S] in order to recover the term σ2

B.

ED
{

E [S]
}

=
D∑
d=1

wd(vd + v − 2cd) +
D∑
d=1

wdED
[
(θd − θ)2

]
=

D∑
d=1

wd(vd + v − 2cd) +
D∑
d=1

wdσ
2
B

=
D∑
d=1

wd(vd − 2cd) + w+(σ2
B + v)

where w+ =
D∑
d=1

wd.
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Third, apply the method of moment matching in which S is equated with ED
{

E [S]
}

rather
than E [S].

S = ED
{

E [S]
}

S =
D∑
d=1

wd(vd − 2cd) + w+(σ2
B + v)

By solving the equation above for σ2
B, we obtain (1.7).

A.3. Estimating B2
d. The term B2

d(θ̂; θd), defined as (E
[
θ̂
]
− θd)

2
, appears in the function

b?. Therefore, in order to make b? operational, we need an appropriate estimator for B2
d(θ̂; θd).

Note that since θ̂ is unbiased for θ, B2
d(θ̂; θd) = (θ − θd)2.

A “naive” estimator for B2
d is B̃2

d := (θ̂ − θ̂d)
2
.

Result 1 (bias of the “naive” estimator). The following shows that B̃2
d is biased for B2

d

and that the bias equals v − 2cd + vd.

Proof.

E
[
B̃2
d

]
= E

[
(θ̂ − θ̂d)2

]
= E

[
θ̂2 − 2θ̂θ̂d + θ̂2d

]
= E

[
θ̂2
]
− 2 E

[
θ̂θ̂d
]

+ E
[
θ̂2d
]

=
[
Var (θ̂) +

(
E
[
θ̂
])2]
− 2

[
Cov (θ̂, θ̂d) + E

[
θ̂
]

E
[
θ̂d
]]

+
[
Var (θ̂d) +

(
E
[
θ̂d
])2]

= Var (θ̂)− 2 Cov (θ̂, θ̂d) + Var (θ̂d) + θ2 − 2θθd + θ2d

= Var (θ̂)− 2 Cov (θ̂, θ̂d) + Var (θ̂d) + (θ − θd)2

= v − 2cd + vd +B2
d

�

Note that in the case where the districts form a partition of the larger region that contains
them, we make the substitution cd = ud

u+
vd (see Appendix A.1), which reduces the final line in

the proof above to v + vd
(
1− 2 ud

u+

)
+B2

d.

Result 1 shows that B̃2
d is upward biased by v − 2cd + vd = v + vd

(
1− 2 ud

u+

)
. Thus, the

estimator B̆2
d := B̃2

d − v̂ − v̂d
(
1− 2 ud

u+

)
= (θ̂ − θ̂d)

2
− v̂ − v̂d

(
1− 2 ud

u+

)
is unbiased for B2

d .

The estimator B̆2
d has two disadvantages compared to B̃2

d: (1) It can be negative and (2) it

will generally have a larger sampling variance. B̆2
d will be negative when θ̂ and θ̂d are close, v̂

is large, v̂d is large, or ud is small.
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