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ABSTRACT. Multivariate composite estimation involves leveraging sampling strength across
both subpopulations and small areas. We review Longford’s multivariate composite estima-
tion method and conduct a simulation study to assess the improvement over the baseline
univariate analog. We also examine the empirical conditions under which multivariate com-
posite estimation yields improvements over the baseline univariate method. In estimating
the covariance matrix term in the expected mean squared error of the multivariate com-
posite form, we adopt the Ledoit-Wolf approach of shrinkage covariance matrix estimation
rather than employ moment-matching estimators. The use of moment-matching estimators
works fairly well in the univariate case, but often cannot yield positive semi-definite matrices
for the multivariate form. In addition to modifying the multivariate composite estimation
method, we compare the empirical results to a simple linear mixed-effects model with the
subpopulation as the fixed effect and the district as random effect.

1. REVIEW OF MULTIVARIATE COMPOSITE ESTIMATION

Longford has done extensive research on design-based composite estimators. His baseline
univariate method involves leveraging sampling strength from large geographies to develop
composite estimators that produce more reliable small-area estimates [5]. We have reviewed
this method and conducted a preliminary application of the method using the American
Community Survey PUMS data [2]. This baseline method, however, does not systemat-
ically leverage sampling strength across subpopulations. Thus, in developing small-area
estimates for a particular subpopulation, we are unable to leverage sample data from other
demographic categories using the univariate method. For small demographic groups, this
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baseline univariate estimation method may not fully capture the potential sampling strength
available in the entire survey data. Thus, Longford introduces an important multivariate
extension that leverages sampling strength not only across geographical levels but also across
subpopulations [4].

1.1. Composite Form. Longford’s multivariate composite shrinkage estimator is of the
following form:

éd = ég(w - bd) + éde (11)

where 6, = (éy), o ,é((ik))T is the direct estimator of parameters in district d with k sub-
populations, 0 is the vector of national estimators for the corresponding parameters, and w
consists of the weights assigned to the parameters. The vector w could be estimated using
similar methods or could be derived from other data sources such as censuses or reliable aux-
iliary data. Note that the subpopulations could be based on demographic categories such
as gender, age, race, or ethnicity. The geographical hierarchy is similarly flexible. Districts
can be any geographic division of the “nation,” which is itself not limited to any particular
geographic level.

Our goal is to find the optimal weight vector b} that minimizes the expected mean squared
error of the multivariate composite 8; with respect to the vector 8, of the actual parameters.
This loss function is of the following form:

eMSE {éd(bd)- aTw} (1.2)
:Var< )+ [ed—eT )} (1.3)
— Var {eg(w by) + 6 bd} +Ep { [eg(w ~by) + 67y — egw] 2} (1.4)

= (W — by)" Var(8.)(w — by) + by Var(6)bq

+2bT Cov(By, 8)(w — b) + bLEp {(ed —6)(6, - e)T} by
— (w — by)T Var(8,)(w — by) + bl Var(8)b, + 2b2 N,V 4(w — b) 4+ bl Eby, (1.6)
=w'Vyqw —2b) Vyw + b Vby + b) [£+ V] by + 2b]Ny;Vyw — 2b/N; Vb, (1.7)

(1.5)

where Ny = - o diag, (nd> V., = diag; (vfﬁ), V = Var(d) = diag, (v(i)>, and ¥ =
Ep [(64 — 0)(9d — 0)"] is the multivariate between-area covariance matrix [4]. Note that

we can normalize n, = Zk 1 nﬁ,) to 1 so that nfi) simply represents the sampling weight of
subpopulation ¢ within district d.

1.2. Minimizing Expected MSE. We obtain the local minimum of (1.2), using matrix
differentiation as follows:
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0 eMSE{04(ba);0Tw}
b, -

—2Vw + (V+ Vb, + {2+V+(2+V)T} by

4 ONGVw — 2 [Ndvd + (NdVd)T] by =0
— 2VdW + 2ded +2 [E + V] bd + QNdVdW -2 [NdVd + Vde} bd =0 (18)

By solving (1.8) for b,, we obtain
where D, =V;+V+XYX—-N,V, - V,N,=V,;+V+3—-2N,V,

We then substitute (1.9) into (1.2) to obtain the minimum expected mean squared error:
eMSE {éd(b;); egw} (1.10)
=w!'Vyw —2[D; (I - Ny)Vuw] (I — Ng)Vyw

) T 1 (1.11)

[D; (I — Nd>VdVV] (Vd +3X+V - 2VdVd)[D; (I — Nd)VdW]
= WTVdW — [WTVdDEI]Dd[Dgl(I — Nd)VdW] (112)
= wl'Vyw — b5 Dyb}, (1.13)

In order to calculate the composite estimator 6,, we substitute (1.9) into the composite form
in (1.1).

04 = 6% (w —b%) + 67b}, (1.14)
=0T I-D; (I - N,V w +6"D; 11— N, Vuw (1.15)
071 - D' (I - N,)V,| + 6D (I - Nd)Vd} W (1.16)

— =~

I — V(I — Ny)D7"6, + V(I — Nd)Dglé} w (1.17)

Since f; = 64w, from (1.17), we can extract the vector form of the composite estimator
evaluated at optimal shrinkage weights:

0, =[1— V(I -NyD;0,+ V4(I—-N,)D;'6 (1.18)
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2. COVARIANCE MATRIX ESTIMATION

Similar to the case in univariate composite estimation, the expected mean squared error
still has a term that requires further estimation. In the multivariate case, this term is
Y =Ep [(64—6)(6;, — 0)"], which is a critical component for solving the optimal shrink-
age vector by in (1.9). Longford proposed moment-matching estimators for the diagonal
entries of 3 and sample covariances for the off-diagonal entries [4]. In practice, however,
this method can lead to estimated covariance matrices that are not positive semi-definite,
potentially resulting in outlier composite estimates. Despite the issue of estimating 3, Long-
ford’s multivariate composite estimation does in fact yield reductions in MSE when we use
the actual value of ¥ from simulated population data. Thus, we seek to modify only the
estimation of X in using Longford’s multivariate composite estimation method.

In practice, we would not have population data to calculate the actual value 3. Thus, we
need an estimator for 3 that performs well even under cases of small sample sizes. This issue
is pervasive in many applied fields with high dimensional data. Ledoit and Wolf proposed
a shrinkage method to estimate the covariance variance of stock returns, using a composite
of a sample covariance matrix and a target covariance matrix derived from a statistical
model on stock returns [3]. Schéfer and Strimmer expanded upon the work of Ledoit and
Wolf by examining various target covariance matrices in order to analyze large-scale gene
association networks [6]. In place of moment-matching estimators and sample covariances,
we will estimate 3 by testing some of target covariance matrices suggested by Schafer and
Strimmer based on the Ledoit-Wolf approach of shrinkage covariance matrix estimation.

Schafer and Strimmer explain that empirical sample covariance matrices are often not ap-
propriate for estimating the actual covariance matrix, especially in cases of small sample
sizes [6]. Similarly, Ledoit and Wolf note that while the sample covariance matrix has ap-
pealing properties of being the maximum likelihood estimate under normality, this only
implies that the sample covariance matrix will perform well asymptotically as the number of
observations approaches infinity [3]. Thus, with small samples, the sample covariance matrix
may not perform well as an estimator.

Hence, we modify Longford’s multivariate composite estimatoin method by adopting the
Ledoit-Wolf approach of estimating covariance matrices. Under this framework, the shrink-
age covariance matrix Y is a weighted average of the target covariance matrix T and the
sample covariance matrix S in the following form

2 =\T+(1-X\S (2.1)
where A € [0, 1] is the shrinkage weight assigned to the target covariance matrix.
Ledoit and Wolf employ the squared Frobenius norm
L) =[[AT+(1-NS -3 (2.2)

as the quadratic loss function to solve for the optimal A\* that minimizes L(A). The resulting
3(A\*) is the optimal shrinkage covariance matrix [3].
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Of the six commonly used target covariance matrices described by Schéfer and Strimmer,
we will focus on four. The first target covariance T 4 consists of unit variances, where

1 =

The following shrinkage weight A% yields the optimal shrinkage covariance matrix using T 4
as the target covariance matrix:

iz Var (sij) + X, Var (i)
Zz’;éj S?j + > (s — 1)

where s;; is the element at the intersection of the ith row and jth column of the sample
covariance matrix S [6].

Ny = (2.4)

The second target covariance matrix T consists of common variances and covariances in
the following form:

avg(s;) ifi=
To).. = 2.5

o), {avg@ij) e 29
The following shrinkage weight optimizes the shrinkage covariance matrix estimator with the
composite form of T and the sample covariance matrix:

G Dy Var(si) + X, Var(si)
Y (s — ) 4 X (s — )2

where ¢ = avg(s;;) and v = avg(s;;) [6].

(2.6)

The third target covariance matrix T p contains unequal variances along the diagonal entries
in the following form:

Tp). — 2.7
(To), {0 if i (27)

The corresponding shrinkage weight

3 — Zi;ﬁj Var(s;;)
L B I
2 iz S

optimizes the shrinkage covariance matrix using the target Tp [6].

(2.8)

For highly correlated data, Schafer and Strimmer suggest using this Target E covariance
matrix Tg, whose entries are defined as [6]

Tg).. = 2.9

(Te); {\/s—s” it (29)

The optimal shrinkage weight corresponding to the target matrix Tg is
3 — Zi;ﬁj Var(s;;) — fi;

P i — /) (2.10)
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fij = — SﬂCOV(SZ‘Z‘, Sij) + S—COV(Sjj, Sij) (211)
2 Sii Sjj

The term Var (si7) found in (2.4), (2.6), (2.8), and (2.10) is the empirical unbiased variance
of the entry at the intersection of the 7th row and jth column of S, which is defined in the
following form [6]:

where

e —( D _ D* — D —
Var (Sij) = Var (mww> = m\/ar (wm) = m\/ar (w”)

D < L
= W Z(wdzj — W)

d=1
)

(2.12)

where wy;; = (éc(;) — 5((1"))(@5{ — 5((; N, Wi = % S wai;, and D is the number of districts
that contain the subpopulations.

Similarly, Cov (Sm sij) found in (2.11) is defined as
D
(D—1)

6&7(8@,8@') = C/(;/(w”,ww) (213)

Since the variance and covariance terms in (2.4), (2.6), (2.8), and (2.10) are replaced with
unbiased sample variances and covariances, the estimated shrinkage weights A3, A5, A},
and A} could lie outside the bounds of [0,1]. As a remedy, we use the modified shrinkage

weight Al, = max(0, min(1, %)) when calculating the shrinkage covariance matrix with the
composite form of the target covariance matrix Ty and the sample covariance matrix S [6].

As a result of attaining the modified shrinkage weight S\TI,, using some target covariance
matrix Ty, we can calculate the estimated weights

by(A) = D7HI — Ny)Vaw (2.14)

assigned to the multivariate composite estimator in (1.1), where Dy = V4 + V + 2(AL) —

N Vy—VuNy =V +V+3(AL) —2N,V,. Note that (2.14) is the estimated analog of the
optimal weight vector b} in (1.9).

3. LINEAR MIXED-EFFECTS MODEL

Since the multivariate composite estimation method aims to improve estimates of subpopu-
lations across districts, linear mixed-effects models can serve as a point of comparison. For
the purposes of the simulation study in Section 4, we assign subpopulations as the fixed
effects and districts as the random effects component of the model.

For comparability, we use the same sample data employed in the simulations for the multi-
variate composite estimation method as the input for the linear mixed-effects model. Since
sample data consists of subpopulations across districts, we are modeling clustered data rather
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than longitudinal data. Specifically, the clusters in our case are subpopulations. Our response
vector y; = (Yi1, Yia, - - -, Yia;)” for cluster i comprises of values of y,;, where i = 1,2,...,k
and the index j = 1,2,...,d; refers to the repeated measures. In this case, k is the number
of subpopulations and d; is the number of districts with subpopulation 1.

The following is the standard form of the linear mixed-effects model for cluster ¢ [7]:
yi=XiB+Zy+e (3.1)

where X is the d; x p fixed-effects design submatrix, 3 is the p x 1 fixed-effects vector, Z;
is the d; x ¢ random-effects design submatrix, 4 is the ¢ x 1 random-effects vector, and e;
represents the vector of random errors for within-cluster measurements. Note that p and ¢
are the number of fixed and random effects, respectively.

The standard distributional assumptions of the model are v ~ A(0,D) and e; ~ N (0, R;),
where D is the covariance matrix of the random effects and R; is the covariance matrix of
the measurements within subpopulation .

4. SIMULATION STUDY

In this study, we simulate populations with two subpopulations (Groups X and Y) in five
districts (A, B, C, D, and E). Thus, we construct a simple linear mixed-effects model® in
which the subpopulations are the fixed effects and the districts are the random effects. This
basic formulation is essentially a random intercept model. Since the multivariate small-area
estimation method does not leverage additional data, we do not add complexity to the linear
mixed-effects model for the purposes of comparability.

The simulations contain the following three major cases:

e DS: between-district dissimilarity of #; and similarity between subpopulations X and
Y within each district

e DD: between-district and between-subpopulation dissimilarity

e SD: between-district similarity and between-subpopulation dissimilarity

Each of these three cases is paired with the following two different cases related to the
underlying population standard deviation o4 for each district d:

e e: equally large o4 for both subpopulations across all districts d
e u: unequal o4 split across subpopulations for all districts d

More specifically, in the equal-variance framework, the underlying population standard de-
viation for both subpopulations across all districts is roughly 10. On the other hand, in the
unequal-variance framework, we specify o4 to be roughly 6 and 10 for subpopulations X and
Y, respectively, across all districts.

'We used the 1me4 package in R to model the simulated sample data [1].
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The nomenclature of the simulation cases is a concatenation of the three major case names
with the two cases related to the underlying population standard deviation. For instance,
the simulated population for Case DDe has between-district and between-subpopulation
dissimilarity with equally large o4 for both subpopulations across all districts d.

Figures 1-6 show the empirical distributions of various estimators for each of the six simula-
tion cases resulting from 1,000 repeated samples of the simulated populations. The sampling
design of 2.5% simple random sampling without replacement within each subpopulation and
each district remains consistent across all six simulation cases. Each district has a popula-
tion size of 1,200 split evenly between both subpopulations X and Y. Note that we simulate
different o4 split across subpopulation lines, which is akin to testing different allocations
of the populations between the two subpopulations. Thus, for the sake of simplicity and
consistency, we do not alter the population allocations in the simulation cases.

For each simulation case, we compare the multivariate method, using various target covari-
ance matrices, with the linear mixed-effects model and the univariate composite shrinkage
estimator. In this simulation study, the univariate method leverages only the data within
a given subpopulation. Since we examine the empirical results of the multivariate method,
using target covariance matrices to estimate X, we evaluate the univariate shrinkage esti-
mator ég at the estimated suboptimal weight BT for the purposes of comparability. Please
see Economic and Statistical Working Paper No. 1 for a review of Longford’s univariate
composite estimation method [2].

From Tables 1-3, the empirical MSEs are listed for all six simulation cases. The notation of
the estimators are simplified in the tables: 84, 89, 67, and 8% are the multivariate estimators
using the target estimators T 4, T, Tp, and Tg, whereas 95 is the predictor using the simple
linear mixed-effects model. For graphical clarity, we omitted the empirical distributions of
67 and 69 from Figures 1-6.

4.1. Case DS. Figures 1 and 2 show the empirical distributions of estimators for Case DS,
while Table 1 lists the empirical MSEs. Under Case DS, the actual parameters vary dras-
tically across the five districts, whereas the subpopulations have very similar characteristics
within each district. As a result, the univariate composite shrinkage estimator does not
perform well, especially for Districts A and E in Case DSe (Figure 1), which exhibit incurred
upward and downward bias, respectively, for the univariate method. In such cases, the
univariate estimator performs worse than the original estimator 6 (Table 1). Since the uni-
variate method can only leverage sample data across districts within a given subpopulation,
between-district dissimilarity creates a huge handicap. The performance of the univariate
estimator fares much better for Districts B, C, and D, since these areas have intermediate
parameters values and are thus less prone to incurred bias from districts with more extreme
values.

On the other hand, the multivariate estimators exhibit consistently better performance than
the original estimator even for Districts A and E. The simulation results suggest that the
multivariate estimators are less prone to incurred bias from dissimilar districts, since this
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method has the added flexibility of leveraging between subpopulations. This benefit is even
more pronounced in Case DSu, in which the multivariate estimators further reduce the
MSE for Group Y estimates by leveraging Group X survey data, which has a much smaller
population standard deviation across districts than in Case DSe. Since the univariate method
cannot leverage across subpopulations, the univariate shrinkage estimator cannot make any
sizeable improvements in Group Y errors beyond those in Case DSe.

Of all the multivariate estimators tested in this simulation study, ég and éf tend for perform
the best. This could be attributed to the off-diagonal entries in the target matrices T and
Tg, which are most appropriate for highly correlated data. The other target matrices have
0 in the off-diagonal matrices and probably do not suit correlated data as well, especially if
the sample covariances are not reliable.

In fact, the multivariate estimators 8 and 6% perform almost as well as the linear mixed-
effects model. For a few districts, linear mixed-effects model incurs more bias than 5 and

7. Thus, some of the multivariate estimators might be more favorable than the linear
mixed-effects model in its simplest form if there is low tolerance for incurred bias.

4.2. Case DD. The underlying parameters differ not only across districts but also across
subpopulations in Case DD (Figures 3 and 4). This difference from Case DS does not alter
the behavior of the univariate shrinkage estimator, since this method does not leverage data
across subpopulations. Similar to the results in Case DS, the multivariate estimators 6¢
and A7 yield smaller errors than those from 64 and 67, mostly due to the added covariance
entries in the target matrices T¢ and Tg.

While the linear mixed-effects model yields the smallest errors for nearly all the districts,
some sizeable biases are incurred for Districts A and E, most likely due to misspecified fixed
and random effects from the linear predictor. For the multivariate estimators, however, the
added feature of systematic differences in #; across subpopulations does not lead to any
sizeable incurred bias. Thus, unless the random and fixed effects in the simple linear mixed-
effects model are correctly specified across all the districts and subpopulations, multivariate
estimators could still have an advantage in applications despite yielding slightly larger errors.

4.3. Case SD. Under the framework of Case SD, the underlying parameters are fairly sim-
ilar across districts, but there exists a systematic difference in 6; across subpopulations.
Naturally, under such a data design, the univariate shrinkage estimator performs better
than the set of mulivariate estimators (Table 3), since the systematic parameter difference
across subpopulations renders the additional leveraging of data between Groups X and Y less
useful. Nonetheless, the multivariate estimators do not exhibit any sizeable bias given the
across-population dissimilarity. As with the previous cases, the linear mixed-effects model
yields the smallest errors. While the linear mixed-effects model can specify fixed effects
across subpopulations, the univariate method can only rely on the across-district similarity
within a given subpopulation.
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FIGURE 1. Case DSe

F1GURE 2. Case DSu
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TABLE 1. Empirical MSE of Estimators for Case DS

D

Case DSe Case DSu

na 8, 000Gy 64 90 @D 0B 6E 6, 6CG) 04 40 60 GF  oF
X A 15 718 871 6.22 571 6.55 580 577 218 3.03 240 210 234 222 312
X B 15 6.69 3.98 4.19 464 476 425 3.09 241 197 186 195 201 184 1.86
X C 15 6.25 325 3.60 4.08 416 373 274 241 182 176 195 197 174 1.59
X D 15 6.56 433 412 451 473 411 3.03 226 188 174 184 190 168 1.66
X E 15 722 7.81 586 565 6.32 547 5.00 201 249 203 181 202 195 299
Y A 15 6.02 7.85 571 533 590 530 5.70 6.29 7.78 4.92 449 555 449 3.39
Y B 15 6.94 430 427 443 480 441 333 6.19 414 366 371 439 336 263
Y C 15 6.90 3.75 4.08 4.38 473 414 272 6.60 356 355 3.80 4.32 332 254
Y D 15 5.61 450 4.18 4.13 4.47 415 3.64 6.55 4.18 3.72 3.79 4.45 348 2.69
Y E 15 6.33 737 559 523 583 522 507 6.34 7.41 489 435 548 455 3.26
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FIGURE 3. Case DDe

FI1GURE 4. Case DDu
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TABLE 2. Empirical MSE of Estimators for Case DD
Case DDe Case DDu
ng 0 09(by) 07 0¢ 6P 0y 0% 0 09(by) 07 0¢ 6P 07 0%
X A 15 6.03 852 6.01 530 6.15 550 6.06 229 329 250 216 248 235 3.03
X B 15 6.87 420 432 474 491 436 311 244 187 180 201 201 177 1.83
X C 15 5,66 340 359 391 4.07 3.65 270 239 173 169 190 190 1.66 1.58
X D 15 6.48 5.02 460 474 506 451 371 2.25 185 169 185 187 165 1.72
X E 15 6.39 747 545 509 576 5.12 478 265 327 265 241 267 254 295
Y A 15 6.18 7.15 511 490 5,57 475 4.19 6.94 882 571 517 6.26 5.39 4.09
Y B 15 6.90 472 458 477 510 462 3.73 6.32 462 412 409 466 401 3.26
Y C 15 6.65 3.64 382 4.15 4.47 385 279 586 340 335 344 399 3.08 226
Y D 15 6.99 467 438 463 5.03 428 333 6.93 519 432 428 5.08 4.00 322
Y E 15 6.07 729 529 501 556 499 471 6.37 6.63 480 445 534 452 337
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FIGURE 5. Case SDe FI1GURE 6. Case SDu
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TABLE 3. Empirical MSE of Estimators for Case SD

Case SDe Case SDu
na 8, 000Gy 64 90 @D 0B 6E 6, 6CG) 04 40 60 GF  oF
15 6.22 274 306 361 352 359 188 242 110 124 158 139 139 1.04
15 6.43 264 296 359 349 354 1.60 225 1.16 122 150 137 136 1.13
15 6.20 2.69 3.05 355 346 356 1.98 223 095 1.14 151 130 1.34 0.82
15 6.81 278 315 377 368 375 172 248 120 130 163 147 148 1.10
15 7.19 282 324 392 381 390 1.72 2,17 1.07 1.18 148 133 134 0.89
15 7.09 289 324 366 379 3.87 1.66 7.04 311 3.48 342 395 4.00 2.06
15 6.00 271 292 326 337 347 1.75 6.54 289 330 332 375 386 1.68
15 6.58 2.78 322 363 369 377 172 5098 279 3.07 3.10 352 348 185
15 6.28 262 286 324 334 339 1.66 5.85 291 331 322 365 370 2.09
15 6.12 257 290 327 340 350 1.68 6.39 286 324 322 366 3.63 2.08
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5. CONCLUSION

We reviewed Longford’s multivariate composite estimation method and modified the esti-
mation of the covariance matrix X, using the Ledoit-Wolf approach of shrinkage covariance
matrices. The simulation study encompasses various data designs to show the performance
of the baseline univariate method, the basic linear mixed-effects model, and multivariate
estimators using several different target covariance matrices. The empirical MSEs calcu-
lated from this study suggest that the target covariance matrices with specified covariance
entries perform slightly better than those with only diagonal variance entries. While the
linear mixed-effects model yields the smallest errors overall, the multivariate estimators are
less prone to incurred bias. The univariate shrinkage estimator is more efficient than the
multivariate estimators only under the condition of across-district similarity. For other cases
with across-district dissimilarity, the multivariate estimators incur much less bias, even in
districts with extreme underlying parameters.

In data applications, multivariate estimators have an advantage of fewer data requirements.
Data aggregated by district and subpopulation are sufficient for developing multivariate
estimators. On the other hand, the linear mixed-effects model requires micro-level data as
an input. Thus, while the linear mixed-effects model yields smaller errors, the multivariate
composite estimation method has the advantage of data flexibility.

Future extensions to this study could involve the addition of auxiliary variables in the mul-
tivariate composite estimation method. Please see Appendix A for a review of Longford’s
auxiliary extension to the multivariate composite method [4]. This extension of the mul-
tivariate method could be compared to more complicated linear mixed-effects models that
incorporate additional variables as random and fixed effects.
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APPENDIX A. MULTIVARIATE COMPOSITE ESTIMATION WITH AUXILIARY VARIABLES

In this section, we review Longford’s extension of the multivariate composite estimation
method, using auxiliary variables [4]. The composite form with auxiliary variables is

~ 17T AT
A4 | Oy w — bg 0 by
=g (o= [ G) A

where 6, and ééa) are the direct and auxiliary estimators for district d and the nation, re-
spectively. Note that this notation differentiating the direct and auxiliary estimators extends
to other components in the augmented optimal weight vector.

By minimizing eMSE {éé‘ ([ "] T) : ng} with respect to the augmented weight vector

{de (" } T, we obtain the following optimal augmented weight vector, which is the auxiliary
analog of (1.9)

b* ~ -~
{b@fﬁ*} =D, (I-Na)Vy [‘8’] (A.2)
d
where
D,=V,;+X+V-N,V, - V,Ny (A.3)
and
- Va O - Var() 0
V= a V = "
d [ 0 Vfl )] [ 0 Var(6(®)
~ 3 2(0’0) ~ o~ NdVd 0
HER Ty

Thus, we can rewrite (A.3) as

> {Dd E(O’G)} (A.A4)

Di=l500 pw

where £ = (20T is the covariance submatrix of X for the direct estimator 8, and the
(a)
P

A~

auxiliary variables 0

Since bfia)* = 0, we can focus on the nonzero component of (A.2), which is

i =Fa(I—Ng)Vaw (A.5)
where
. -1
F,— <Dd _ 509 (Dg“)) 2<a’0>) (A.6)

After substituting (A.5) into the expected mean squared error function and extracting w,
we obtain the analog of (1.18)

04 = [I— V(I - Ng)F]0,+ V(I - NyF,0 (A7)
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In estimating 3, one might adopt the Ledoit-Wolf approach of shrinkage covariance matri-
ces [3]. As we have shown in the simulation study in Section 4, the target covariance matrices
with specified covariance entries tend to yield smaller errors than the target matrices with
only diagonal variance entries. Given that the auxiliary extension involves potentially highly
correlated direct and auxiliary data, target covariance matrices with specified covariance
entries could be advantageous.
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